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ABSTRACT

Generally, classical polynomial splines tend to exhibit unwanted undulations. In

this work, we discuss a technique, based on control principles, for eliminating these

undulations and increasing the smoothness properties of the spline interpolants. We

give a generalization of the classical polynomial splines and show that this general-

ization is, in fact, a family of splines that covers the broad spectrum of polynomial,

trigonometric and exponential splines. A particular element in this family is deter-

mined by the appropriate control data. It is shown that this technique is easy to

implement.

Several numerical and curve-fitting examples are given to illustrate the advantages

of this technique over the classical approach. Finally, we discuss the convergence

properties of the interpolant.
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CHAPTER I

INTRODUCTION

In this work, we study the control problem

-_x(t)d_. = .,l_(t) + Bff(t),

 7(t)= c (t)

(1.1)

with the cost function
n

J(u) = fn _ 3_lu(k)12 dt. (1.2)
k=0

Here, _E R m,/TE R v, gE L2(_,R_), t C f_ C R, andA E/:(R'n, Rm), B E/:(Rt, R "*)

and C E /:(Rm,RP). The vectors _ and ff are the state and control vectors of the

system, respectively. A is called the state matrix, B the control matrix and C the

observation matrix.

Our goal is to find the control ff that will drive the system from one point to the

other in the state space ]RTM and at the same time minimizes the cost function J(u).

We will also establish controllability conditions of the system (given the cost function

J(u)) and then apply the results to spline approximation problems.

It has been shown [13] that the system (1.1) is controllable if and only if the

matrix

Z=( B AB ... Am-lB ) (1.3)

has rank m and that

M = {(A,B)" _:= A2+ Bg is controllable} (1.4)

is a manifold in R re(m+0 [141. Anderson and Moore [21, Luenberger [23], and Sage

[28] have dealt extensively with the optimal control problem when the cost function

is J(u) = fn u 2 dt (the minimum energy problem). Conditions for controllability of

the system are also given [23].

Spline interpolation constitutes a class of piecewise polynomial approximation

that is commonly used when approximating many of the fllnctions that arise in ac-

tual physical processes. Spline approximations of filnctions are preferred to most



approximationand interpolation methodsbecauseof their inherent smoothnessprop-

erties [10]. In [21], the minimal property associated with spline approximation is

shown. A great deal of work has been done on polynomial splines, particularly cubic

splines [11]. In [6] the convergence properties of a special class of quintic splines are

discussed. There is a small amount of literature on exponential splines [7, 15, 24, 26].

McCartin [24] has given an excellent theortical discussion of exponential splines and

also studied its convergence rates and extremal properties. Pruess [26, 27] asserts

that exponential splines can produce co-convex and co-montone interpolants.

In their paper [30], Zhang, Tomlinson, and Martin show the relationship between

control theory and spline approximation by studying the minimum energy problem,

namely: minimize

subject to

or equivalently

f0 TJ(u) : u2(s)ds

_x(t)d_ = A_(t) + bu(t), t e [0, T]

_0 t -'
_(t) = eAtS(O) + eA(t-S)bu(s) ds.

In this case, they obtained the optimal control law by observing that the operator

K :L2[0, T] _ ]Rm

defined by

has an adjoint given by

f0 TKu = eA(T-s)bu(s) ds

K*Z = bT eAT(T-s)Z

for any _" E Rm. Th,ls, the optimal control can be written as

u = K*(KK*)-'(_(T) - eATs(o)).

(The interested reader should see Luenberger [23] or any other standard text on

functional analysis for more details.) By imposing certain smoothness requirements

on u(t), they were able to obtain the spline functions. However, this approach does not

eliminate the undulations associated with classical polynomial splines. In an attempt



to overcomethis problem, we introduce into the cost function, J(u), derivatives of

the control law u(t) and hence, formulate our problem in the sobolev space Hn(_).

In this work, we intend to use optimal control theory to develop methodology for

spline approximations. As an illustration, suppose that the write-head of a computer

is required to move from a certain position, :_(t0), to another position, :_(T), then

some control u(t) i:; needed to drive the write-head from the initial state, _(0), to the

final state, _-(T). Thus, the write-head (the system) must go through a certain set of

points, namely,

(t0, 2(t0)), (tl,_(tl)), . . ., (tn-l,_(tn-1)), (tn,2(tn))

0----t0 <tl <... <tn-1 <tn--T

at given times. A spline curve can be fitted through these data points and then a

control that takes the system through this trajectory determined. We hope to find

the set of controls

u,(t): _(t___) u_) _(t,)

that achieves this while minimizing the functional J(u). Then, by applying the appro-

priate smoothness requirements of u(t) at the endpoints of each subinterval, It,_1, t_],

we will obtain and characterize the class of spline approximations. Numerical exam-

ples will be given to demonstrate the advantages of this technique.

The work has been divided into several parts.

control problem in the space

H'_(_) = {u E L2(12)lDJu E L2(i't),

In Chapter II, we formulate the

jEZ, O<j<n}.

We also discuss some of the basic concepts in systems theory and control. Further-

more, a brief discussion of some of the properties of the space Hn(_), including the

relevant embedding theorems, is given. In Chapter III, optimal control is discussed.

The control problem is transformed into a system of boundary value problems and,

by applying standard techniques for solving BVPs, the desired optimal control law

is obtained. Chapter IV deals with the derivation of spline functions by imposing

appropriate smoothness conditions on the optimal control law obtained in Chapter

III. The splines are then classified by studying the structure of the basis functions.

Finally, in Chapter V, results of computer simulations and a discussion of rates of

convergence are given.



CHAPTER II

FORMULATION OF THE PROBLEM

2.1 Motivation

In order to motivate the importanceof developingthe relationshipbetweencontrol

theory and spline functions, we first present an example that is of great practical

importance.

Example 2.1 The dynamics of a computer disk drive.

Consider the disk-drive of a computer system. It can be modelh;d as an inertia system

with governing equation given by:

M(0)t_ + C(0, 0)t_ + K(0)0 = f(0) (2.1)

where M(0) represents a generalized inertia term and is positive definite, C(0, 0) is

generalized damping function, K(0) is a generalized stiffness function, and f(0) is a

forcing function. Linearizing the system at 0, we obtain

it + H_2 + H2x = M-l(O)f. (2.2)

Transforming equation (2.2) into a system of first-order equations, we obtain

2.= AZ + B f (2.3)

where 2' = (xl, x2) T, xi = x, x2 = k,

and

A (o ,)-If2 -H,

(o).,
Equation (2.3) expresses the system dynamics in state-space form. Now, suppose that

the write-head is required to move from a certain (initial) position, 2'(to), to another

(final) position, E(tl). Then, the input function, f, must be chosen appropriately
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to drive the systemfrom the initial state, Z(t0), to the final state, Z(ts), following a
certain trajectory. Thus, the write-head must passthrough a certain set of points

(to,Z(to)), . . . , (t,,, _(tn)),

O= to < tl < ... < tn-1 < tn = T

at given times. A spline curve can be fitted through this set of points and then

a control that takes the system through this trajectory determined. We can find

several such functions, f, that will drive the system through the specified set of

points. However, a more interesting problem is to find the function, f, that not

only drives the system from one point to another in state-space but also minimizes

a certain fuctional, J(f). This kind of problem will be solved in a general setting

and by forcing f to satisfy certain smoothness conditions at specified points, we will

obtain and characterize the class of spline functions.

2.2 Basic Systems Theory Concepts in Finite-Dimensions

In general, by time-invariant, finite-dimensional linear system _(A, B, C, D) on

the state-space, X, we mean that X, U, and Y are finite-dimensional linear vector

spaces and A, B, C, and D are bounded linear maps: A E L(X), B E E(U,X),

C E £(X,Y) and D E E(U,Y). X = 1Rm, U = ]R'n, Y = IRk are called the state,

input, and output spaces, respectively. Furthermore, the state _(t) E X, the input

u(t) E U, and the output _7(t) E Y, are related by the equations

_(t) = A_(t) + Bff(t), t >_ 0, 2(0) = _o (2.4)

_7(t) = C_(t) + Dff(t),

where :_0 E X is an arbitrary initial condition. If g E

C([O,T];X) and ff E L2([O,T];Y) are given by

= eAtlo+ eA(t-')B (s)ds

and

_0 t_(t) = CeAt_o + CeA(t-')Bff(s)ds + Dff(t)

(2.s)

L2([0, T]; U), then 2 E

(2.6)

(2.7)

....... _ma_



...................... |I.......... in ......... _il
i,

The frequency-domain representation of equation (2.7) is given by

fj(s) = Dit(s) + C(sI- A)-IB_(s). (2.8)

The above representation is obtained by letting £'0 = 0 in equation (2.7) and then

taking Laplace transforms. Equation (2.8) can be written as

f/(s) = a(s)_(s) (2.9)

where

G(s) = D + C(sI - A)-' B (2.10)

is called the transfer flmction of the finite-dimensional system _(A, B, C, D) defined

by equation (2.4). The transfer functions are proper rational matrices with com-

plex coefficients. A theory for control design based on a transfer matrix description

has been developed using the algebraic properties of the finite-dimensional transfer

functions. In this work, we will base our analysis entirely on state-space theory.

2.3 The Problem Statement

Consider the linear system:

d.
--_x(t) = A:_(t) + bu(t),

with

t e [0, T], (2.11)

/OlOo/ /xl t,0 0' 1 0 I 0 x_(t)

A= • : : i , 5= • , _(t)= •

0 0 0 1 0 xm-l(t)

al a2 a3 am _, 1 j xm(t)

and the observation function

y(t) = _:_(t), _ = (1,0,...,0).

Let the interval [0, T] be partitioned into p sul,lt_tervals

P:0=t0<tl<...<ts,__ <tp=T,

(2.12)

(2.13)
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and set hi -- ti - ti-1. Our objective is to determine the control element u(t) 6

C"-_[0, T] that drives the system (2.11) from i(0) to i(T) such that the observed

function y(t) satisfies the interpolation conditions

y(t,) i = 0,1,...,p- 1,p. (2.14)

lVloreover, we require that u(t) minimize the cost function

(Notice that equation (2.15) is a special case of equation (1.2) where _ = 1.) A control

that achieves this objective is called optimal. Here, 2., b 6 Rm, u(t) E L_[O, T] and

A is an m x m matrix. We want to find the control law u(t) that drives the system

(2.11) from 2"(0) = 2"0 to 2.(T) = 2 ¢ and minimizes the functional J(u). Before we go

any further, the following definition and theorem are in order:

Definition 2.1 The linear system (2.11) is said to be controllable if for every pair

of vectors (_o, x-,r) 6 R m, there exists a finite time T and a control u(t) such that,

= eA z"° + [r eA(T-s) b, tt( S) ds.
J0

Theorem 2.1

trollability matrix

M=( g Ab ... A"-'b )

has rank m. We then say that the pair (A, b) is controllable.

Example 2.2 Consider the system i(t) = A2.(t) + bu(t), 2.(0) = 2.0. Let

The given linear system (2.11) is controllable i/and only if the con-

O 1 0 I
0 0 1

0 0 0

and b = ( O 01)T. Then

A __.

0 0 1
0 l 0 =3.

100

rank(b, Ab, A2b ) = rank

(2.16)

(2.17)

Hence, the pair (A, b) is controllable.
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The system (2.11), with A, gas in equation (2.12), is controllable. This is a direct

consequence of Theorem (2.1) since, in this case, the matrix M = ( b Ab ... Am-lb )

has full rank. Now, our problem is to minimize the functional J(u) subject to the

constraint

-_x(t)d_. = Ae(t) + bu(t), t e [0, T].

We may replace this equation by the equivalent constraint

ff "e(t) = eAteo + eA(t-S)bu(s) ds. (2.18)

Then the control problem may be formulated in the space

gn(12)={uEL2(_)l DJu E n2(fi), 12 C R, j E Z, O < j <_ n}. (2.19)

Hn(l'_) is the Sobolev space of order n on _ C R with inner product defined by

(u,v)H,(n) = u(k)v (k) dt (2.20)

and the corresponding norm

fO T n nIlu]]_.(o) = _ ] u (k> 12 dt = _, Ilu(k)ll  (n). (2.21)
k=0 k=O

Since our problem is formulated in the space H'_(.Q), it is appropriate that we state

some of the properties of this space that will be most useful in solving our problem.

2.4 Sobolev Spaces and Embedding Theorems

In this section we will give some of the important results about the Sobolev space

Hn(_) that will prove useful in this work. Sobolev spaces are very useful when a

higher degree of smoothness is desired. On the other hand, a major problem with

this space is that many of the operators that occur frequently in applications are not

self-adjoint with respect to the Sobolev inner product.

Definition 2.2 Let l > 0 be an integer; 1 < p < oc, _ C R m.

I,V_(12) : {u e Lp(9)l 3 l)% e Lp(9), Va g lal <. n}

c Lp( )



with norm
1

Ifp=2andflcR, then

w?(f2)= wy(n)= H_(f2),

with norm

and

Hn(f2) = {u e L2(f2)lDJu e L2(f2), j • Z, O <_j < n}.

n

k=O

Hg(f_) = {u e H"(f2)lDJu = 0 on Of 2, 0 < j}.

Definition 2.3 Suppose that X1, II. 11_and X2, II• 112are Banach spaces and that 3

a positive constant c < cx_ such that Ilzlla < cllzll2, w- • x2 implies X2 C Xt, then

we say that X2 is embedded in X1. Furthermore, the embedding is called compact if

the unit ball

Bx_(o) = {x • X2lllxll_ < 1}

is compact in the space Xl.

Definition 2.4 Compactness Criterion in Hilbert Spaces.
Oo

Let H be a Hilbert space and {¢k}k=x an orthonormal basis in H. Let B C H be a

bounded subset of H. Define

P,_ : H ---* Hn = span{¢k}_=l

by

P.x= _(x,¢k)¢k
k=l

- oo

p l. H ---* Hnl = span{fk}k=n+,

oo

P:_= F_ (_,¢_1_
k=n+l
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Furthermore, define

Then [3 is compact iff

E.(B) = sup IIP =II.
xEB

lim e.(B) = O.
n -.._ O0

Theorem 2.2 Let H be a Hilbert space with orthonormal basis {¢k}k___l, H1 C H

and H2 C H. Suppose that

0 < Al <_ )_2 < ""_. _ oo

0 <__#1 <_ #2 <_ ""#. _ oo

and
l-tn n
-- --_ O0

A,,

Furthermore, let llull = E_=I _kl(u, Ck)l _ and Ilull = X_L1 #kl( u, Ck)[ 2 be norms in

Hi and H2, respectively. Then H2 C Hx and the embedding is compact. •

Lemma 2.1 Let
n

Ilutll-- Z
k=0

Then (2.21) and (2.22) are equivalent.

(2.22)

Theorem 2.3 The Sobolev space Hn(f2) is a Hilbert space.

Proof: The proof of this Lemma is found in Aubin [3].

Theorem 2.4 The space H"(f_) is separable and reflexive.J1]

Theorem 2.5 Extension Theorem for Sobolev Spaces.J1, 16]

Let f_ C I_m and Of_ piecewise smooth. Assume also that (2 C f21. For any fixed p, l,

(1 < p < cx_, l > 0, l E Z), q a bounded linear operator

l lE:

such that V u e W_(Q), (Eu)(x) = u(x), x eft, and IIEullw ,<n,) •



Now, considerthe space L2(fl), where f_ = [0, T]C R l •

1 2*ikt

¢_(t)= ---_ _ , k _ z
V'I'

is an orthonormal basis in L2(f_). So u E L2(_) implies that

_(t) = G ckCk(*)
kEZ

1 2xikt

k6Z

where

c_ = (u,¢_)

/nu(t)¢k(t) dt

-- u(t)e--W- dt
,If

(i)

with

If u e H_(fl), then

n

= HD u][Z2(n)
k=O

IlullL(n)= G I_.12,
k=0

by Parseval's equality.

(ii) _Ed'_ L2(fi); therefore, since u E H_(f_),

du 1 _._k,

kEZ

and

(iii) Finally,

11

(2.23)

(2.24)

.du . 2_ik (2.25)
dk = ( _-_, Ck ) -- -_ Ck

k6Z

27rik 2t
IID'ull_cn) = _ 1--_--I Ic_l 2- (2.27)

kEZ
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This is true since Dlu E L2(_t). Hence,

1

kEZ

2_tk¢

T

where
2rrik t

Ak = (Dtu, Ck) = (--_----) ck,

w, e H_(r_).

Ilull_,,(m= _ k" Ic,,l2
kEZ

Thus, there exist constants oq, a2 > 0 such that

_1(1 + k') _ _<__2 k-_'-- _(1 + >_)".
l-=0

This establishes that the norm defined by

= _ IID'ull_.2(_)
1=0

(2.28)

(2.29)

(2.30)

IllulllL,(m = _(1 + kVIckl2
kEZ

is equivalent to the original norm

n

_ D k ,2Ilull_,..(f,)- _ II u L=(m"
k=O

Lemma 2.2 The embedding H_(_) C H_-I(_) is compact.

Proof: By the above discussion, we have

and

IMIH,,-,(_) = y_.(1 + k2)'-'lc, I_
IEZ

= _ _,1_,12 (2.31)
IEZ

Ilull,..(r_) = _(1 + k=)'lc,I2
IEZ

= _,,1_,1=, (2.32)
IEZ

where_\_= (1 + k2)--' and _ = (1+ k_)_. Thus, by Theorem(2.2) the _mbedding
is compact since

_, (1 + F-)"
-- _'OG.

A. (1 + k2) n-l
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Theorem 2.6 The embedding Hn(fl) C Hn-l(fl) is compact.

Proof: It is obvious that H'*(f_) is embedded in Hn-t(f_) since

_<

However, the compactness of the embedding is not so obvious. To prove this, we

apply lemma (2.2). Let f2 C fh with (_ C fh. By the extension theorem,

E" Hn(_) _ H_(fl_)

is bounded.

Now, let

Clearly,

Thus, tile embedding

By lemma (2.2), the embedding C : H_(fil) C Hff-l(_-_l) is compact.

n- tq-'(fi,),

IIRull.--,( ) _<II',fl.;-,(,,).

Hn(_) _ H_(fl,) _ H_-t(gt,) _ H"-_(_)

is compact and the proof is complete.

Theorem 2.7 Let I2 C R m be a bounded domain with 012 E C 1. (a) If 2n > m,

then H"(f_) is embedded in C((_) and the embedding is bounded; that is, there exists

a constant C such that [[u[Ic(n ) < Cl[uI[H,(fl ) for all u e H'_(i2). Furthermore, the

embedding is compact. (b) If n - _ > r, then Hn(9..) C C_(fl) and the embedding is

compact.

Proof: Tile proof of this Theorem is found in references [1, 16].
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2.5 Existence and Uniqueness of a Solution

The set of elements u E Hn(_) satisfying the constraint (2.18) is a linear variety

_7"in Hn(_), that is,

V = {u e Hn(_)'Y,(t) = eA(t-S)bu(s)ds},

V J- = {weHn(_):(u,w)=0 rue V}, (2.33)

= {u E H"(_)" e(t) = eAteo + eA(t-S)bu(s)ds}.

Therefore, the control problem is equivalent to finding the element u E _' of minimum

norm.

d

; I 2

Theorem 2.8 The control problem (2.11), with A, b as in equation (2.12), has a

unique solution.

Proof. To establish the existence and uniqueness of a solution, it suffices to show

that the linear variety V, as defined in (2.33), is closed. First, observe that V is

nonempty since the system is controllable (by Theorem 2.1). Let {u,} be a sequence

of elements from 1? converging to an element u. To show that 17" is closed, we need

to prove that u E 1_'. Let

if(t) _- eAtxo Jr- eA(t-_)bu(s)ds. (2.34)

We must show that 2(t) = if(t).

f0 t "_if(t) - _,n(t) = eA(t-_)b[u(s) -- un(s)]ds.

By Cauchy-Schwarz inequality, we have

l i(t)- e,(t)12 < (fo' I eA('-_b[ _ ds)(fo'lU(s ) - u,(s)I z ds)

< t I (_"_ Ak( S)kb) 12 ds I u(s) - un(s) 12ds

k=0

z( A' ('s''<-- k! Ilbll

fot e211AIl(t-s) dsJlu _ unll 2

< IIAII-_ (e 211hIlt- 1)Ilu- unll 2
- 2

dsllu- u,,l?

(2.35)

(2.36)

I
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Since A c L(Rm), there exists a constant M < oc such that I[All _< M. Thus,

M-' (e,Mt_ 1)I[u- u,,l[ 2 (2.37)If(t) -- _(t)[__< -if--

Therefore, integrating from 0 to T, we get

lift- _,_ll < Cl[u- u,,ll (2.38)

1

w,,or,,C=(_ ("_:--'(_'_-,) - _))_."r,,,,s,
lift- ell _<lift- &ll + II.r,,- .ell<_Cllu- _,.,11+ lie, - :r-II. (2.39)

Since u --+ un and :_ ---+aTn as n --+ oo, we get _ = £-. m



CHAPTER III

OPTIMAL CONTROL

Optimal control is a branch of moderncontrol that providesanalytical designsof
a specialtype. In this case, the system is required to be the best possible system of

a particular kind in addition to satisfying stability requirements and all the desirable

constraints associated with classical control. Linear optimal control is a special type

of optimal control in which the controlled system is assumed linear and the control

element is forced to be linear. This leads to an output that is linearly dependent

on the input. The linear nature of many engineering plants justifies the study and

analysis of linear optimal control systems.

To obtain the optimal control law we first reduce the control problem to a boundary-

value problem. The resulting boundary-value problem is then solved using standard

techniques. The embedding theorems of section (2.4) assures us that the solution of

this boundary value problem is bounded.

3.1 The Optimal Con_:rol Law

In this section, we will determine the optimal control law for our system

-_.T(t)d_. = A_.(t) + bu(]), t e f_,

with cost function
n

J(_) = f. Z I_(_:)l_at.
k--O

The optimal control u(t) is the element u E I) of minimum norm, where _-Pis given by

equation (2.aa). What follows is a construction of V ±. For u, v e Hn([0, TI), consider

the inner product (u, V)u-(n). If we integrate this by parts, we obtain

(_L,v)._(n) = u(k)v(k)ds = u(k)v(k)ds (3.1)
k=O =

= fo _vds + (-1) k v(2k)uds + _(--1)k-_'V(2k-J)U(_-_)l_
k=l j=l

5(5 /= /o_E(-1)_v(_),_ + (_l)_-J_(_-_)_(J-,) io_
k=0 k=l \j=l /

16

..a
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i

n

fo r _(-1)%(2k)u ds + [vO)u + v(2)u(_) d3)u + + v(n)u("-1)
k=O

V(nkl)u(_-2) 'Jr-...-_ (-1)(n-')v(2n-')',,] {_'

Now, we want to minimize

subject to

J(_)= (_.,u)._(.)

fo T9(u)= e-A_x(T)-_(0)- e-Asg.(s)ds=0.

To this end, we let

L(u, _) = J(u) + _T g(u)

where A is the optimizing vector. Therefore, the optimal control law is obtained by

solving the following equations1:

OL(u,_) -0
Ou

OL(u,Y,)
=0, j=l,2,...,m

0)_j

Using equation (3.1) in the above equations, we obtain the following boundary-value

problem:

and, hence,

1Notice that

11

_(_l),_u(_,_)= ;,_-A,_'
k=0

)L(u,_) = (-1)ku (2k) - )_Te A'b u(s)ds+

\k=O

(_l)k-ju(2k-j)u(j-,) [TO +_T (e-ATx(T) _ :r(0))

k=l \j=l /

Ou = (-1)ku (2k) - ,_e -A" ds
\k=O

or(u, Y_)
0Aj = gj(u), j = 1,2,...,m
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n

Z(-I) _-_<__-_Io,_= o
k=;

n-1

_(-l)_-_u (_ Io,_= o
k=l

2

_(-I) _-_',<'_÷"-_Io,:,= o
k=l

v(") IO,T = O.

(3.2)

We will show that the BVP (3.2) has a unique solution. Tlfis is not surprising

since we are dealing with a system that is controllable. Furthermore, it will be shown

that the solution of equation (3.2) is a function of A and t namely u(A, t). Then, the

desired optimal control law will be given by

u*(t)-"u(A*,t),

where A* is the vector ,_ that satisfies

ot s) = e-AT_,(T) -- e-At°z(to).ds

Now, if we let

(3.3)

(3.4)

u = _1

u(') = _'_=42

_t(2n- 1) I= _2__, = ¢2.

u(:") = _';n - (-1) 2'_u'("-') +..-+ (-1) "+3u(4) +

(-1)"+2u (2) + (-1)"+'u + (--I)"XTe--A'IT,

(3.5)

then the differential equation reduces to the following system of first-order linear

differential equations:

kO'(t) = F_(t) + 5(t) (3.6)

BkO(t) [o = BoqJ(t) = 0 (3.7)

BkO(t) IT = IIr'P(t) = O, (3.8)
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where

,I,(t) = (¢,(t), ¢2(t),..., ¢2"(t))r,

_(t) = (-1)'b'r e-artAg2" .

and g2" is the 2n - vector with 1 at the 2n - th position and zero elsewhere•

y

o 1 o ... o o_
0 0 1 ... 0 0

: : • .•. •

: : : ".• :

0 0 0 ... 0 1

(-1) "+10 (-1) "+2 ... (-1) 2" 0

(3.9)

and

g

010-1 0 ......... (-1) "-2

001 0-1 ......... 0

• • • . •
....... .. •

000 0 0 ... 1 ... 0

0

(1) "-2
(-1)"-'

0

0

(3.10)

By elementary row operation, the matrix, B, may be expressed in the equivalent form

B = {bi,j}i=l ..... mj=l ..... 2"

where

1
bi,j = (-1) "-i

0

ifj=i+l,i=l,...,n

if j = 2n - (i - 1), i = 1,...,u- 1

otherwise.

(3.11)

Now, let ,I,(t) be a fimdamental matrix solution ¢_f the homogeneous BVP

• '(t) = e_P(t) (3.12)

Bo_(t) = Bq2(O) = 0

BTq2(t) = Bq2(T) = 0

(3.13)

(3.14)



........ ! mlu-- - _ _ --_.-- --

2O

with 9(0) = I. The general solution of equati,,n (3.6), when it exists, then satisfies

_(t) = _(t):+ _,°(t) (3.15)

where

j_0 t
• °(t) = oCt ) e_-'(s)a(s)ds (3.16)

is a solution of equation (3.12) with _°(0) = 0 and _"is an arbitrary element of R 2'_.

Therefore, the boundary conditions (3.13), (3.14) become

B0(O(t)_'+ _°(t)) = B_= 0 (3.17)

BT(_(t):+ _P°(t)) = (BT_(t)):+ BT_°(t) = O.

This gives the following system of equations

STY(t) F:

where F: = --BT_°(t). For a convenient notation we let

[°]It= Br_(t)

and

Thus,

[0]F= F:

H_= F.

Let us discuss the following important lemmas before going any further•

Lemma 3.1 The matrix F has 2n linearlg independent eigenvectors.

Proof: From

det(_I- F) = 0

we obtain the characteristic polynomial of F as

92"+_+ (-I)"
_n _ _-2 +... + (-1)" = _2 + 1

=0.

(3.1s)

(3.19)

(3.20)

(3.21)

(3.22)

!i
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Solving equation (3.22), we see that the eigenvalues of the matrix F are

= _+ _-_)'_ k=l, ,n,n+2, 2n+1. (3.23)f_k e(I k ., ...... ,

Thus, F has 2n distinct eigenvalues. Now, solving

(_kX - V)pk = 0 (3.24)

gives the eigenvectors of F as

1

&

Pk = /_-1 Pk.1 k=l,2,...,n,n+2,...,2n+l, j=l,...,2n (3.25)

2n--2

where Pk,1 is the first component of the eigenvector Pk. Since the eigenvalues are all

distinct and the eigenvectors are as in equation (3.25), we then have that the matrix

F has 2n linearly independent eigenvectors.

Lemma 3.2 (Gantmacher [17]) For a nonsingular operator A, Ax = 0 implies x = O.

Lemma 3.3 When the system (2.11) is controllable, then the matrix H has full rank

for all T > O.

Proof : Recall that

H=

To prove this lemma, it suffices to show that null(H) = 0, by lemma (3.2). Without

loss of generality, we take T -- 1. Therefore, let :_ E null(H). Then

B._=O (3.26)

and

BeFZ = 0 (3.27)

:I

'i
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where F and B are given by equations (3.9) and (3.10), respectively. By using equa-

tion (3.11), we see that B£ = 0 implies that

l_n-lxX2 + (--) 2n

z_ + (-1)"-2z2,,_i

--0. (3.28)
xj + (--1)n-(j-1)X2n-(j-1)

Xn+l

If we denote the columns of eF by Pj, j = 1, 2,..., 2n, then equation (3.27) may be

written as

(BP_ BP2 ... BP2,) :_ = 0

where

Thus,

BPj=

t l_n-1
P2,j + _,-- ) P2n,j

Pa,j + (-1)"-2P2--1,j

Pi,j + (-1)'_-(i-1)P2,,-(i-UJ

Pn+l

(3.29)

0 = (BP1 BP2 ...BP2,):_
2n

= E xjBPj
j=l

2n

_ 1 n-(i-U .- E (p. +(-)
j=l

i= 1,2,...,n. (3.30)

From equation (3.28)

Z2n-(j- 1) = (-- 1)-n+J+2xj j = l,...,n. (3.31)

Thus, equation (3.30) becomes

211

E Xj (Pi,j + (--1)n-(i-1)p2n-(i-1),j)

j=l
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n 2n

j=l j--n+l

n

= E _3(p,,J+ (-1)°-('-_)p_°-.-_-)+
j=l

n

Z(-i)-(--J+%+, (p,,_._.,+ (-1)"-('-%._(,_,.._j+,)
j=l

-- (p,,_+ (-1)"-(/-%°_(,__),0_+
n

E (Pi,j "]- (--l)n-(i-1)P2n-(i-1),j "_ (--1)-(n-j+l)pi,2n--j+2 "_ P2n-(i-1),2n-j+2) Xj

j=2

= mi,lxt -k mi,jxj, i = 1,..., n; j = 2,..., n. (3.32)

This yields the set of equations

M_7= 0

Tl

where f = (xl, x2,..., Xn) T and M = {mi,j}i,j=l

mi,1 = Pi,1 + (-1)n-(i-1)P2n-(i-l),l i = 1,...,n

mi,j = p_,j + (-1)"-(i-1)p2_-(i-_),j + (-1)-(n-J+l)Pi,2n-j+2 + P2n-(i-1),2n-j+_

i = l,...,n;j = 2,...,n.

Since Pj, Pj = (plj,... ,P2n,j) T, are linearly independent, it follows that the columns

of the n x n matrix M are also linearly independent. Hence,

My= 0

implies

ff---_ 0,

thai, is, xl = x2 = ... = xn = 0. Bllt from equation (3.32)

x2n-(j-1) = (--1)-n+J+2xj j= l,...,n.

Thus, x,_+l = ... = x2n = 0 and Z = 0. Therefore, null(H) = _.

Theorem 3.1 Consider the linear nonhomogeneous system of differential equations

_' = A(t)_ + b(t) (3.33)

,I
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where A(t) e LI(M) and b(t) _ LI. Let T • C --_ _ be continTLousand linear.
Further, let the solutions of (3.33) satisfy

T.g(t) = r, (3.34)

for any given r C R n • Then the B VP (2.32), (3.34) ha._ a unique solution .[or every

r E R n and every b(t) E L1 if and only if the. corresponding homogeneous linear BVP

2' = A(t)i, (3.35)

T:_(t) = 0 (3.36)

has only the trivial solution _(t) = O.

Proof • The proof of this Theorem can be found i,: B,,rnfeld/Lakshmikantham [8].

We now state the following:

Theorem 3.2 The BVP (3.12), (3.13), (3.1_) has a unique solution.

Proof • The proof follows from Lemma (3.3) and Theorem (3.1). •

il "

4

i?i
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3.2 Determination of the Optimizing \rector ,_*

Let us now determine tlle vector _" that yields the optimal control u(t). First,

we observe that when the conditions of theorem (3.1) hold and F given by equation

(3.9), the unique solution of (3.12), (3.13), (3.14) is expressible in the form

,I,(t) = o(t- t0)g-_r + _°(t)

eF(t-t°)H-1F + ftl eF(t-s)a(s)ds (3.37)

Thus, from equation (3.3), the optimal control is represented h)'

u(t, /_*) = 4Td2(t, A*) (3.38)

where the 2n-vector, e'l, is the coordinate vector given by e_ = (1, 0,..., 0, 0) T. The

vector A', (hereafter, denoted simply ;_), that yields the optimal cont, rol is obtained

by applying equation (3.4):

e -At'e(tf) - e-At°_(to) = ft: / e-Asbu(s, _) ds. (3.39)

For ease of notation, let

Thus

m(t0, tf ) : e -At!:_(tf ) - e-At°:_(to).

Now,

A(to,tl) = fti'e-As_(s)ds

tl -AsF=_T s

= ftl; e-a_b_eF(_-t°)H-lr +

_f e-ASbe_l (_eF(s-r)_(r)dT)ds

j[ti'e-Asb(e llft eF(s-r) (T)d")d8

(3.40)

(3.41)

..4
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(3.42)

where

( )fo h e-a_'_ _ F_' e-Fe_2,,_re-are dr' ds' (3.43)C(h)=(-1) n e_e

h = t! - to; r = to + r _, and s = to + s'. Similarly,

0

= e-AtoK(h)H-1F

= e-At°K(h)IV2F1 (3.44)

where
ds'

and W2 is the 2n x n submatrix of H -I given by [WI : W2] = H -1.

and the n-vector F1 is, (from 3.19), given by

(3.45)

Now, r = (6, ri) T

t
rl = -Be rtl e-F_7(s) ds

-Be Ftt £h e_F(to+¢) y(t ° + s') ds'

_ BeFhfo e-F¢(--1)n_2nATe -A(t°+ )bds

h ^F(h-s')z Er_-A%' ds e--Art°A= (-1)"+lB _- _2.u

A T to -"= B_(h)e- :_ (3.46)
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where

ft(h) = (-1) "+: fohef(h-_')g2nffre -Ars' ds'

is a 2n × m constant matrix. Substituting (3.46) in (3.44), we obtain

: -A',o
where

_(h) = W2Bft(h).

(3.47)

(3.48)

(3.49)

C = (G(h) + K(h)zl(h)). (3.53)

Equation (3.52) is a system of linear equations in Ai, i = l, 2, ..., m. Hence, the

optimal control law is obtained by substituting the solution ,-_ of (3.52) into (3.38).

Theorem 3.3 The system (3.52) of linear equations has a unique solution. Further-

more, the solution of (3.52) is given by _ = (e-At°Ce-ATt°)-lA(to,tl).

Proof : This follows from the existence of the optimal contr_d law.

The preceding analysis leads to the following:

Theorem 3.4 When the system (2.11) is controllable, the control that drives the

system from £(t0) to :_(tf ) and minimizes the cost function J(u) =ftto I _=o(Uk) 2 ds

is given by

u(t,_) = e-_l (eF(t-t°)H-1F + ftl eF(t-s)5(s)ds ) (3.54)

where t C [t0, t/], _Y(s) = (--1)ne_n_Te-asb, and F, H, F are as given in (3.9) and

(s.io).

where

Thus, equation (3.41) simplifies to

e-At°G(h)e-Art°A+e-At°If(h)77(h)e-Art°_=e-Ats_(tl)--e-At°:_(to). (3.50)

That is

e-At°[G(h) + I((h)77(h)]e-art°,_ = [e-At':_(tl) -- e-At°_(to)]. (3.51)

From equation (3.51), we obtain

e-At°Ce-Art°A(to, tl) = e-At_e(tl) - e-A'°:?(to) (3.52)
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Theorem 3.5 The following are equivalent:

1. There exists a control u(t, _) such that

is satisfied for all x(T), x(O) and all T > O.

2. The B VP

Be(0) = 0

Be(T) = 0

has a unique solution. Here, ¢ = (u, u(1),... ,u(2n)) T, o" = (-1)n_re-art_, and

F and S are as in equations (3.9) and (3.10).

3. The matri_

C = G(h) + K(h)71(h)

is nonsingular.

2From equations (3.43), (3.45), and (3.49),

(/,o /,i' )l e_As._e_ll eFS e-Frg)nb'T e -Art dr - tV2B ef(h-P)e_ab'r e -ATp dpG(h)+K(h)_l(h) = (-1) n "-'
d,3



CHAPTER IV

APPLICATION OF CONTROL THEORY TO SPLINE APPROXIMATION

In this section, we describe a procedure for constructing spline functions from

control principles.

4.1 Splines and Control Theory

Theorem (3.2) implies that the optimal control law for the system (2.11) is unique

and this control element is given by equation (3.54). Since a control law for the

-_1 ., x-'p-1system exists, there exists a set of points x ,.. with x] = ai, i = 0, 1,...,p

such that the solution of the system (2.11) satisfies £(ti) = _, i = O, 1,... ,p - 1,p.

By theorem (3.4), the control element that drives the system (2.11) from _-1 to _,

i = 1,... ,p, and satisfies equation (2.13) is given by

u(t)[[_,_,,td = ui(t), (4.1)

where ui(t) is the restriction of u(t) on [ti-l,ti]. Now, we need to determine the

unknowns _i, i = 0, 1,... ,p. However, since x_ = oLi, i = 0, 1,... ,p, we only have

(m - 1)(p + 1) unknowns to determine. This is realized from the (m - 1)(p- 1)

continuity conditions on the control u(t), namely,

ulr)(t,)= u_r_(td, r = o, m- 2, _= 1, ,_- 1 (4.2)i+l " " " , " " "

and 2(m - 1) conditions at t = 0 and at t = T. Now, from equation (3.54),

u(t) = e-_L(eF(t-t°)H-_F + eft ffoe-F_(s)ds ) (4.3)

u(r)(t)=e-_l eF(t-t°)FrH-1F+eFtF _ 'e-F_5(s)ds+_FJh("-_-J)(t) (4.4)

j=0

r=O,...,m-2.

Thus,

ulr)(t) = _ ( er('-t'-_)F_H_-_r' + er_F_ I'ti-1 r_l )e-r_cTi(S) ds + _ FJJ_r-l-J)(t)
j=O

(4.5)

29



r = 0,..., m - 2, t E [t___,td.

Similarly,

( s:U,+y(t)(_)=_ eF(t-t,)F_H[+_r_+_ + eftF _ e-t_+_(S) ds + _-_ ))E (t
j--o

r ----O,...,m-- 2, t E [ti,ti+l]

where, from equation (3.6)

_(t) = (--1)"g_nAT e-ACb

and from equations (3.17) and (3.181

Hi=

and _(t) = e F(t-t_-l). Thus,

3O

(4.6)

(4.7)

[ BO(ti-l)BO(t,) ] (4"8/

ul")(ti)=e-_l eFh'FrHi-lF(t') +Fr t, eF(t,_s)gi(s)ds+__Fr_}r_l_J)(t,) (4.9)
-I j=0

( ,, )°(,) - (4.1o)_,+l(ti) = _ FrH,-+_r(t_+_) + _ "_(_-_-J)(ti)rai+_
j=0

Substituting equations (4.9) and (4.101 in (4.2 t , we have

r--1 /
eFh, F'Hj1F(t,) + F" [t, eF(t,_,)5i(s) d s + _ F,_y__l_J)(ti) =

J t,-1 j=0

F'Hg+IF(ti+l) +j=oE' i+1 ,,,)
(4.11)

r =0,...,m-2, i=l,...,p-1

The first term on the right side of equation (4.9) is:

_eFh, F_ g_lr(t,) = _eFh' F_Hi-_r(t,)

=_efh'F"H;l(r_(t,)6)
(4.121
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If weset

Hi-1 I" ii= (Hi:Hi)

where H_, H_' are 2n × n submatrices of Hi- 1, we obtain

e-_leFh, FrH[1F(ti) _-a"Fh, ..r,..,:..,,, ( 0 )-- ele _ Lni'ni) B_t(ti_l,ti)A(ti)

= e-_leFh, FrH_'Bf_(h,)e-Art'-'A(ti_,,t,)

The second term in equation (4.9) is:

--1 -1

_-tF rar Fti _ti

i-1

e-r  i(s) ds

e-f_ , ( l_n_l'e-ArsAIt ti) ds2nk-- } _, i-l_

(4.13)

(4.14)

= (-1)'_e-_lF_eFt' (_i'-1 e-FSe2'*bre-AT_ds)A(ti-l,t,)

= (--1)"e-CllF_eFh(fohe-F_'_2n_e-Ar_'ds')e-Art'-lA(ti_,,ti)

= -e-_lF_ft(hi)e -A't'-'A(ti_,,ti) (4.15)

Finally, tile third term in equation (4.9) is:

r--1 r--1

j=o j=o
r-I

= (-1)n+r-le-_l_.,(-1)JFJ_,_b*r(A_-l-J)TA(ti) (4.16)
j=O

On substituting equations (4.12), (4.15), and (4.16) into equation (4.11) we obtain

e-_l [_Fhi l2r _lll l:_ O{h "_,, -ATti-1

r-1

F_fi(hi)e -Art'-' + (-1) n+_-' _f-_(--1)JFJ_n_r(Ar-'-J)TIX_ =
j=0

e-_,fF_H " Bi+lf_(hi+l)e -Art' +1 [ i+1

r--1

(_1) "+_-' E(_l)JFJg2nb'r(Ar-l-_)T]Ai+l

)=0

(4.17)
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From equation (3.52),

_i = eATti_ic-l(hi)[e-Ah,_i _ _/-1]

Thus, equation (4.17) simplifies to

-e-_l ll/Ii( hi)eATt,-,C-' (hi)_'i-l +

e-_[Mi(hi)eATt'-'c-l(hi)e-"h' + Mi+l(hi+l)eA%C-'(hi+l)]_-

e-_lMi+l(hi+l)eart'c-l(hi+l)e-A"'+'_ +1 = 0

where

(4.18)

and

y(ti) = xl(ti), i= 1,...,p- 1.

Thus, y(t) is a spline fimction and the above discussion proves the following:

(4.23)

hi = ti - ti-1

r--1

Mi = efh'FrH_'Bi_t(hi)e-mrt'-'-Fr_(hi)e-ar"-'+(-1)n+r-' ___,(-1)_FJg_,,_r(A'-'-J)T
j=o

(4.19)
and

r-1

Mi+, _,rr_r,, r_ 9t(hi+i)e--Art, + (_l)""r-' __,(_l)JFJg2n_r(Ar-'-J) T (4.20)= .r a*i+la-_i+ 1

j=0

i = 1,...,p-- 1, r=0, 1, ...m--2.

Therefore, we can obtain the unknowns 2_,...,x -'p-1 by solving the linear system

(4.18). This enables us to define the control u(t) piecewise on the interval [0, T].

Further, the solution of the system (2.11) is given by

Z'e(t) =eAt_ ° + cA(t-S)bu(s)ds (4.21)

Now, from the structure of the state matrix A, we observe that x_(t) = Xi+l(t), i =

1,... ,m- 1. Thus, the continuity of x_(t) implies the continuity of Xi+l(t) for i =

1,..., m - 1. Also, the continuity of u(r)(t) implies the continuity of x_"+_)(t), r =

0,..., m - 2. This leads to the conclusion that the observation function y(t) = xl (t)

is an element of C 2m-2[0, T] and satisfies the boundary conditions

y(_)(O) 0 y(_)(T) T (4.22)--_ = Xr+l, r = O, 71_ -- 1Xr+l, • . . ,
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Theorem 4.1 Let _(t) be the solution of the system (2.11), (2.12), and (2.15) with

zl(ti) = _i, i = O, ..., p. Then there ezists a unique function y(t) E C2m-2[0,T]

that satisfies equations (4.22) and (4.23).

4.2 Classification of Splines

The type of spline is determined by a set of basis functions. By control principles,

we can construct these basis functions. Now, suppose the interval [0, T] is subdivided

into p subintervals. In this analysis, it suffices to consider just one subinterval to de-

termine the kind of interpolation functions of the state Z(t). Thus, on the subinterval

= +/,i

The control law is given by Theorem (3.4):

eA(t-S)bu( s, _)ds (4.24)

From equations (3.44) and (3.46)

a(t) = (-1)" o

and

(4.25)

e-_,eF{''-r')_', 2_bre-Arr' dr') ds' (4.26)

If(t) = f-to e_A_,_ (e__lep_,) ds' (4.27)
Jo

C(t) = K(t)_?(h) + G(t)

If we substitute equation (4.25) into (4.24), we obtain

(4.28)

= en(t-to)[20 + K(t)W2rl(h)e-Art°_ + G(t)e-Art°_]

= eA(t-t°) [_ + (g(t)_l(h) + G(t))e-Art°eArtoC-lent°(e -dt,2' -- e-At°20)]

"._ eA(t-to) [20 + C(t)C-'(h)eAt°(e-At'J) -- e-At°20)]

= eA('-to)[20 + C(t)C-l(h)(e-Ah2 ' - 20)] (4.29)
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Now,sincethe matrix F has linearly independent eigenvectors (Pl, P2,... ,p2n), then

F is similar to a diagonal matrix D = diag(_l,...,fl2_) [19]; that is, there exists a

nonsingular matrix P such that

Let

p

F = PDP -1 (4.30)

/ )/ /
Pl,1 Pl,2 -.. Pl,2n P_,I ...... Pl,2n

• : , p-l= : i

t I

P2n,1 P2n,2 • .- P2n,2n P2n,1 ...... P2n,2n

Here, the columns of P are the eigenvectors pk, k = 1, 2,..., 2n, of the matrix F.

Let E be the Jordan canonical form of the matrix A. Then A = QEQ -1, where Q is

the matrix such that AQ -- QE. Thus, further analysis is simplified by replacing the

matrix F with PDP -1 and the state matrix A with its Jordan matrix E. Hence, we

may write

_(t) = QeE(t-t°)Q -_ [_ + C(t)C-I(h)(Qe-EhQ-IZ ' - _)]. (4.31)

Let the first row of the matrix QeE(t-t°)Q-_(I-C(t)C-I(h)) be (¢_(t), ..., era(t)), and

the first row of the matrix QeE(t-t°)Q-1C(t)C-I(I_)Q(..-EhQ-1 be (¢1(t),...,era(t)).

Now, the system (2.11) is controllable since rank(b Ab ... Am-lb) = m. The output

of the system is

y(t) = _2(t)

= e-_l(en(t-t°)x-'° + ft_eA(t-S)bu(s)ds)

= QeE(t-tO)Q-1 [_o + C(t)C-I(h)(Qe-EhQ-_:_ _ _)]

= (¢l(t),...,¢m(t))2 ° + (¢l(t),...,Om(t))_ 1
m

= E _°¢_(t)+ E _¢,(t).
k=l 1=1

By choosing _ = e'k and :_1 = 0, we obtain ¢_) = y(_)(t),

Thus, for r = 0,...,m - 1,

¢([)(o) y(_)(o) _')(o) _+1(o) ° =_,r+l: : = = Xr+ I

(4.32)

r : O,...,m- 1.
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_._ _. _- .__ Xr+ 1

k= 1,...,m.

In a similar manner, if we choose _ = 0 and :_1 = gj, then we obtain

¢_)(t) = y(r)(t), r = l,...,m.

Hence,

j=l,...,m.

The above discussion proves the following theorem.

Theorem 4.2 Let A be given by equation (2.12). Furthermore, let the first row

of the matrix QeE(t-t°)Q-l(I- C(t)C-l(h)) be (¢l(t),...,¢m(t)), and the first row

of the matrix QeE(t-t°)Q-'C(t)C-l(h)Qe-EhQ -1 be (¢l(t),...,¢m(t)). Then, for

r -_ O_ . . . , m,

¢(_)(0) = 5k,,+l, ¢(_)(h) = O, k = 1,...,m

C)(t)=o, l=

Therefore, Ck, Ck, k = 1,...,m are basis functions for y(t). These basis functions

depend on the entries of the matrices e El, Kit), and G(t). Hence, we can determine

the type of spline function by carefully examining the entries of these matrices.

Proposition 4.1 Let the state matrix A be nilpotent of order m and the cost function

J(u) = foT _,_=o(U(k)(S)) 2 ds. Then y(t) is a polynomial spline if and only if n = O.

Proof. To prove this proposition, we observe that the spline function y(t) is expressed

in terms of the basis functions Ck and _Pk, k = 1,...,m, equation (4.31). However,

the basis functions themselves are dependent on the entries of tlle matrices e Et and

e TM, where E and D are the Jordan forms of A and F, respectively. Now, if A is

nilpotent, as in the proposition, then A is already a Jordan matrix and hence the

entries of e _t are all powers of t. It then follows that the spline function y(t), which
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is a linear combinationof the entriesof e Et and e TM is a polynomial if and only if the

entries of e TM are all powers of t. This is the case only if n = 0. •

From theorem (4.2), we see that the basis functions ¢i, and _bi are determined by

the matrices e Et, and eEtQ-lC(t). But these matrices are themselves characterized

by the spectrum of the state matrix A, and the matrix F. Therefore, we will classify

the spline functions obtained by control principles by examining the entries of A, and

F. In this classification, we consider the case where the state matrix has dimension

2 and the cost function J(u) = for ((u(s)) 2 + (u'(s)) 2) ds. For higher dimensions and

derivatives of higher orders, the procedure is similar but more involved. So let

1)O/1 2Oe2 _t, Oe2 E N l

Then the eigenvalues of A are

b= (01) T .

Thus the Jordan form of A and the transformation matrix Q are as follows:

Q= E1 (2 ' -_2-_1 -(i 1 "

Since J(u) = for ((u(s)) 2 + (C(s)) 2) ds, then, from equation (3.22),

r=( °1 01)

with eigenvalues and eigenvectors

(1/_l=l, ¢_2=-1, pt= 1 ' P2= -1 "

!
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Thus

p

11

1D= 0

Also, from equation (3.10),

1)  ,_1(12111)
e t 0 )

e Dt =
0 e -t

B=(01)

and on the subinterval [ti-1, ti],

eF(t_t,__) = ( cosh(t- ti_l)¢(t)
sinh(t ti-1)

sinh(t - ti-1)

cosh(t ti-1) ) I

Thus,

1 (sinh(t - ti-,) cosh(t - ti_,))
Be(t) =

and from equation (3.20), we have

Hi
B¢(ti)

_(0 1)sinh hi eosh hi

(4.aa)

(4.34)

1(coshh 1)n/-- 1 __ sinll hi - sinh hi 0

where hi = ti - ti-1. From equation (3.43),

-(z )= __ /t-ti-, e -As b e-¢l[leF(s'-r')_2bTe-ATr' dr' ds'
G(t - ti-l) Jo

( 01'(t) g12(t) ) Q T= Q _2t(t) g22(t)

where

-1 {-2(t- t,_,)O,,(t) - 2(¢_--_,) -f-:
e(1-_*)(t-t_-_) - 1

+
(1 __,)2

e -(t+_l)(t-t_-l) -- 1

f(1+ _,)2
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K(t-t,_l) = f,-,,-,e ds'
JO

(_ll(t) _12(t) )Q _l(t) k_(t)

where

-1 /e (1-_')(t-ti-1) -- 1

k,_(t) - -1 _ e ('-_')(t-ti-') - 1

1 {e(1-O)(t-ti-_) -- 1k_(t)- 2(_2- 6) 1-_

I _e (l-(_)(t-ti-')--1

_(t)= ._(_-_,)1 _--_

Equation (3.47) gives

e -(l+_z)(t-ti-1) -- 1 '[

1 +_,

+
e-O +¢')(t-ti-') - 1 "[

1 +_

e -(1"_'¢1)(_:-ti-1) - 1'[

f1 +_1

e -(l+¢_)(t-t_-_) -- 1 "l

+ 1 +_ _ "

_0 hi_(hi) = ev(_'-")_'_Ye -_r_' ds'

where

O-}12

_ sinh hi + cosh hi - e -_hi

(_2 - _,)(1 - _)

_ sinh h_ + cosh h_ - e -_hi

(_2 - _)(i -_)

sinh hi -- _I cosh hi + _,e-_' hi

1

it..

_'2_=- (_- _,)(l -,_D
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_22

and equation (3.49) gives

sinh hi - t_2cosh hi + _2e -_ hi

(,_-_,)(1-_)

_(h) = Y:'B_(h,)

=(7)._,2)Q_..r121 rl22

where
sinh hi - _1 cosh hi + _1 e -_hi

sinh hi - _2 cosh hi + _2e -_h_

7)12 = ((2 - (_)(1 - (_) sinh h,

)21 _ 0

?)22 = 0.

Therefore,

and

K(t)_7(hi) - Q

c(t) = G(t) + K(t)rl(hi)

( _.(t) + _H(t)7).(h_)= Q _21(t) +/z2t(t)_n(hi)

_,(t) _2(t)

_12(t) + k,l(t)7)12(hi)^ _ QT

_(t) + k_,(t),),2(h,)/

where

_l(t) = O,l(t) +/¢H(t)7),l(hi)

_h(t) = O,_(t)+ k,,(t)7),2(h,)

c3_,(t)= 02,(t) + k_l(t)7),l(hi)

ciH(t) = g22(t)q-]¢2,(t)7)12(hi)

(4.35)

(4.36)

i

3
3

,t

,I
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= Q-T I f722+ k21_12

= (_l(hi) _(hi))_,(h,) e,_(h,)

where

IV[= (t)11(hi)W]Cll(hi)_ll(hi))([?22(hi)4-/z21(hi)z)12(hi))-

From equation (4.32),

e_('-'°)F-C(t)C-'(h,)] = (¢,(t), ¢_(t), )

where

el(t) -
_2

1

1

i

& -::
1

1 {:2e_l(t_t,_1)- _le_2(t_g__l)} --

_[:'li(h/)c21(t) + :21(hi)522(t)](2e:'rt-t,-,)[C[-' _

and

_ - _ + +
1

1

1

1

_[Cll(hi)cll(t) 4- :_:(h,)etdt)le:,(H,-,)ICl-'+

_[:h, (h,)£:2,(t) + :2,(h_)5_2(t)]e_,(t-t,-,)lCl-_ _

_[Cl2(hi)cu(t) 4- 622(hi)_12(t)]e&(t-t,-,)lCl-t _

_[c12(h,)c21(t) + :=_(h_)_,=(t)]e<,('-_,-,)lCi-,

(4.37)

(4.38)

(4.39)

(4.40)
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Also

where

and

ea(t_to)c(t)C_l(hi)e_ah_= ( ¢l(t ), _p_(t)), (4.41)

I

÷ (4.42)

1

(4.43)

Now, let us consider the various cases that arise from the various forms of the

eigenvalues of the state matrix A.

Case 1: a_ + ax > 0. In this case the matrix A has two distinct eigenvalues.

Case 1(i): If _ :_ (._, then the spline obtained is an exponential spline with basis

functions ¢_(t), ¢_(t), ¢_(t) and ¢_(t) given by equations (4.39), (4.40), (4.42), and

(4.43). Here, ¢1(t), ¢2(t), ¢_(t) and ¢_(t) are linear combinations of e t, e -t, e &t, te _t,

e_t, and te _t.

Case l(ii): If c_ = 0, and ce_ > 0, then _t = -_ and we again obtain an exponential

spline. The basis functions are linear combinations of e t, e -e, e ¢_t, e -&t, te _t, and

te-_2 t.

Case l(iii} If a_ = 0, and a_ -¢ 0, then (t = 0, and _ = -2a_ if c_ > 0; _ = -2c_,

and _ = 0 if a_ < 0. The resulting spline function is a linear combination of the

functions 1, t, e t, e -t, e _t, and te -_t if ce2 > 0; or 1, t, e t, e -e, e _t, and te -_It if

c_ <0.

([

i!,?
'6::

i[ "-

[

! .
;i

,14."

.i
li

,!
!
:i
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Case 2: a_ + al <_ 0. This case leads to two complex eigenvalues:

where w = _/-(a22 + al).

Case 2(i): a2 :_ 0, al < 0. The resulting spline has basis fucntions which are linear

combinations of e t, e -t, e_tcost, ea2tsint, te_2tcost, and tea2tsint.

Case 2(ii): a2 = 0, al < 0. This gives

_1 = i -_/-2--_l= iw

_2 = - i -_/-2"_1= - iw

and a spline function whose basis functions are linear combinations of 1, t, e t, e -t,

cost and sint.

Case 3: _ + c_1 = 0. This implies _1 = (2 = _2.

Case 3(i): ol2 7t O. Then

0 o_2

o=(,o)o_2 1

o (1 o)-_2 1

c(t- t,_,) = - ['-"-' e-_"_ _" e-'"_,_e -_'''_ ds'
JO

=_o(o,,I,I°,,I,I)_,(t) _2_(t)
(4.44)

where

t

!

4
1

1

ibm(t) = A_(t)e -2'_2(t-t'-') + A2e -'_2(t-t'-') + Aa
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where

..... c,dt-t,-O + C3

_:_.dt-t,-O + D:l(.t) e-_dt-t_-O + D_

{t2_(t) =_ D_ (.t)e

(t - ti-0 _

1

2

A2(t) =
1

1

1

t-- ti-1 _
__ 4a_(,1- w

Bdt) = :2a_(1- a2) 1
t - ti-I +

I +

Cdt) =--_
1

1 +

1

I

1

pdt) =



where

_z_d

_÷al

1.

1

44



45

1
H3(t) - -(1 -a_)

where

T hu s,

and

0211 _---

_d21 =

f2(hi) [h, eF(h,_s,)ff2_e_A%, ds'

_21 ;o22

1 - hi(1 - a2) e(l_a2)h , _ 1 -- h_(1 + Ot2)e_(l+a2)hi

2(1- _)_ 2(1+ _)_

1 (e O-a2)hi - 1 e-O +_2)h' - 1)

hi - 1 + hia2e(l__2)h _ _ 1 + hi(1 + a2) e_(X+_,2)h , +
2(1 - 0_2)2 2(1 + a2) 2

1 (e(1-a_) t _-- 1 _ e -(l+_'2)hi - 1)
w22= -_ \ -l _ a2 l + a2

BeFh_

=(osinh hi cosh hi

/ \
-1 / coshhi -1

Hi-1 - sin-hi L - sinh hi 0 ) "

1(1)sinh hi 0

v(hi) = n_'BeFhi_(hi)

r/21 r/22

2_2

2(1 + a_)

(i- _)_

(4.46)

(4.47)

(4.48)
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where

hi_u = 2(1 - as)

2(1 + c_2)

1

2(i - _2)2
1

2(1 + a2) 2

hi cosh hi
+

2(1 - as) sinh hi

hi cosh hi

2(1 + a2) sinh hi

1 12(1 - a_) 2 +

hi cosh hi
+ +

1 + a2) 2 2(1 - a_) 2 sinh hi

hi cosh hi _ e(l_a2)h,+

- 2(1: _-_h h,]

hi cosh hi ) e_(l+a2)hi _
/

hi eosh hi _ (4.49)
2(1 + a2) 2 sinh hi /

1 cosh h, ) e(l_a2)h,_.br/12= 2(1-as) + 2(1- a2) sinhh,

"1 cosh h i _ e_(l+a2)hi __2(1 +as) 2(1 -_a-_2)_nh hi]

1 [ coshh,
1-_ \1-__1

r/2t = 0

r]22 = 0

(4.50)

This leads to

/ Ion(t)rh,(h,)
Ki(t - ti_,)r/(hi) = Q [

k21(t)r/u(hi)\

where

c'(t) = Ki(t)rl(hi) + Gi(t)

c2(_,(t)v,,(h,) - ;7,,(t)
k21 (t)7711 (hi) g21(t)

\

ch(t) 4_(t)

k2,(t)rh_(h,) _22(t) ]

_,(t) = _,,(t),Ta,(h,)- 0,,(t)

c_2(t) = c_2cu(t)+/ql(t)rh2(hi) - _12(t)

ci21(t)= a2cu(t) +/c2,(t)r/u(hi) - _2,(t)

(4.51)
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where

Now

c_2(t ) = a2c21(t) + a2(kn(t)_12(hi) - _12(t)) + _:21(t)_h2(h,) - _22(t)

Q-T( _1_12- _2 - (_i_ - _) ) Q_,,c,__Cv'(h,) =

\ ]

_(h,) _(h_)
(4.52)

C(t)C-'(h,) = (c_l(t) c_2(t)) (_l(hi)ic_(t) ch(t) _,(h,)

= (_,(h)cH(t) +_,(h,)o2(t)

[ _,(h,)c2,(t) + _,(h,)c22(t)

_2(hi) )

_2(h,)c21(t) + _2(h,)c22(t) /
(4.53)

where

Similarly,

(4.54)

¢1(t):e a2(t-t'-l) {(1--e_2(t- t,-_))(1-_ll(hi)Cll(t)-_21(hi)c12(t))}-

e_(t-t'-',{(t-t,_l)(_(h,)c2_(t)+_(h,)c_2(t))} (4.55)

e_2(t-t,-,){(t-t,_,)(1-_(h,)c2,(t)-_2(h,)c22(t))}(4.56)
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where

_bl(t) = e"_(t-t_-_-hd {(1- a2(t - ti_l))(1 + a2hi)(cn(hi)cu(t) + c21(hi)c12(t)) } +

e_2('-t'-l-n') {(t- t,_1)(1 + a2h,) (_l(h,)c21(t) + _(h,)c22(t)) } +

-- _ .t x iJ 12

e_2(t-t'-_-nd {a]hi @_2(h,)c_a(t) + _2(hi)c22(t))} (4.58)

and

&.th _c t
e_(t-t'-'-_') {(1- a2h,)(1 -a2(t- ti-1))(_2(hi)cu(t) +-_, i) 12( ))} +

e _(t-t'-'-h') {(1 - a2hi) (_2(h_)e21(t) + _2(h,)e22(t))} • (4.59)

Thus, the resulting spline has basis functions which are linear combinations of 1, t,

t 2, e -a2t, te-a2 t, e-2a2t te-2a2 t, t2e-2a2 t, e(1-a2) t, re(l-a2) t, e-(l+a2) t, te-(l+a2) t.

Case 3(ii): a2 = O. In this case, the state matrix is in Jordan form and hence, G(t)

and K(t) may be computed directly as follows:

A= 0 0 "

On the subinterval [ti-1, ti],

-- BeFh i

_(o-- ehi _e-hi

2
1 ) (4.60)
2

1( cos,lhi1)Hi-1 - sinh hi sinh hi 0
(4.61)

(4.62)
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where

Also

 (hi) - fo _ eF(hi-s')g2bre-Arg ds'

wlz = hi - sinh hi

02_2 = cosh hi - 1

02_z = -w_2

i = sinh hi.0222

,7(h,) =

7121 7722

7]z2 = 1, r]21 = O, and 7/22 = O. From equation (3.45),where 7111 _ sinhhi

where

K(O

ku (t-) = -tsinh E + cosh t - 1

k12(t-) = tcosh t - sinh

k_l (t-') = sinh

k22(t-) : cosh t"- 1

-hisinh(h,)+ -h, cosh(h_)+ /

Ki(h_) = cosh(hi) - 1 - sinh(h_)

sinh(h_) cosh(hi)- 1

(4.63)

(4.64)

(4.65)

(4.66)
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/ k,,(t--)
K'(t)n(h,) = /

\

where

From equation (3.43),

c'(t)

,_,,(t-)= k,,(t-),7,,

k,_(t-)= k,,(t-),7,_

_:_,(t-)= k_,(t-),7,,

( _:n(h) k:,,(h) )Ki(hi)rl(hi)= k2,(h) ]¢22(h)

fo t-tl= (--1) e-Asg(e_l foSeF(s-r)e2bTe-ATrdr) d8

- g_,(-t3g_(t-)

where '1

_3 + sinh[ - t-eosh [gll (_-')

912(t-) = ---_ - cosht + tsinh[+ 1
2

r2
g21 (t-) = cosh [- 1 - -_-

g22(t-) = t- sinh

ai(hi) = (

5hil 3 q_ sinh(hi)-

hi cosh(hi)

cosh(hi) - 1 - _2

h?
-_ - cosh(hi)+

2

hi sinh(hi) + 1

hi - sinh(hi)

o

(4.67)

(4.68)

(4.69)
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Thus,

= ni(t%(h,) + ai(t-)

_ [ G(t3 + g,l(t3

- ch(t-) 4_(t-)

G(t-) + g,:(t-)
i_:(t3+ 9_2(t3)

where

4_(t-) =

ci2(t-) -

4,(t-) -

42(0 =

([sinh [ - cosh [ + 1) (cosh hi - 1)
.3V --

2

1
2

sinh hi 3

sinh [ (cosh hi - 1) + cosh [
sinh

[ cosh [ + sinh [

t'= t - ti-l, i = 1,...,n- 1. Hence, when t = ti, we obtain [= hi, and

Ci(hi) = Ki(hi)_?(h,) + Gi(h,)

_ (_:H(hi)+gll(hi) _h,(hi)+gl,(h,))- /_21(hi) + g2,(hi) _:22(h,) + g22(h,)

_ (c_,(hi) cit2(hi))

Furthermore,

C[-t(hi) = d(Ci(hi))-l ( _c_l(hi)c_2(hi) -ci12(hi) )cilt(hi)

= ( Cll(hi) c12(hi) )

where d(Ci(hi)) denotes the determinant of Ci(hi)) and is given by

(4.70)

(4.71)

(4.72)

d(Ci(hi)) = o,(hi)c22(hi) - c_2(hi)c2,(hi). (4.73)
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Therefore,from equation (4.31),wehave the following:

eAt-- eA_Ci(t-)C_l(hi) = 0 1 -

o 1 c_(t-)e. + _(t-)e_

= (¢,(t3¢2(_)..

)

where

¢_(_ = 1 - [c,,(_. + c12(0_2,+ _(_21(0_.+ _2_(0_21)1

and

¢2(0 = _- [c.(_12 + c,_(0_ + _(c_I(_L_+ _:(_)].

Substituting for cq(t), these equations simplify to:

? P
¢1({) = 1 + _'llt- g2_- + g_x_- - cu[sinh t +

(1 - cosh t-')(cosh hi - 1 )]
sinh hi

and

¢2({) = (1 + _h2)t- g22_ + _M_- - O2[sinht +
(1 - coshO(coshhi - 1)

sinh hi

Similarly,

eMCi(t_)c__l(hi)e_ah _ (1 t)0 1

C21(_-)_*11-_-C22(_-)_'21

= (¢1(t)_b2(t)).*

where

¢1(0 = [¢_(_,, + e_(0e_, + _(_1(_)_,+ c2_(0e2,)1

= 1 - ¢1(t-)

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)
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and

_(t3 = -h_[c_(t-)_ + c,_(t-)_ + _(_(t3_,_+ _(t3_)]+

[_(t3_ + _(t3_ + _(c_(t3_ + _(t3_)]

= -h,(1 - c_(t-)) + t- _2(t).

(4.81)

Thus, the spline obtained has basis functions which are linear combinations of 1, t, t _, t a, e t,

and e -t.



CHAPTER V

CONVERGENCE AND NUMERICAL RESULTS

Here,wewill examineconvergenceratesfor the spline approximant for case3(ii)

and then give the resultsof computersimulations.

5.1 Resultsfor a Nilpotent Matrix
Sincethe state matrix underconsiderationis 2 × 2 (that is m -- 2), then it follows

that r = 0, and, from equation (4.18), the requirement ulr)(ti) = u (_)i+l(ti) yields the

following:

Mi(hi) = efhH_'Bfl(hi)e -A%-' -- Ct(hi)e-Art,-1

[ Fh ..,.-.
= (e 1-1ilj- I)fl(h)e -Art'-'

-1 ¢o_hh_ )
= sinh hi 12(hi)e-m%-_

0 0

(5.1)

where

_M,(h,)eA'"-_C-_=( d, e, ) (5.2)

e-_lMi(hi)eArt'-lC-le -Ah' = ( di -hid, + e, ) (5.3)

coshhi i - i

cosh hi i - i

cosh _i4_]_,-- (5.4)
sinh hi

cosh hiw_2]_ 2 (5.5)
sinh hi

mi+l(hi+l) = H_'+lBfl(hi+,)e -art'

----- sinh hi+l fl(h)e-A%i
0 0

(5.6)

54
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(a.r)

where

e-q'_li+l(hi+l)e AvtiC-le-Ahi+l _-- ( di+l -hdi+1 + ei+l ) (5.s)

• i+l =i+1 .i+l _+1

di+l- -¢021 ell -{- 1"°22 c21 (5.9)

sinh hi+ 1

u.ti+l ai+l ,i+1_i+1

21 'q2 +"22 '_22 (5.10)
ei+l = sinh hi+l

e_l Mi(hi)e-Arh'C-le -Ah' + earMi+l(hi+l)e-arh'+'C -1 = ( dl + el

Substituting in (4.18), with _/= ( ai fli )T, we obtain

(o,)

i=l,...p- 1.

This gives

-ei_i-t+(-hidi+ei+ei+,)/_i-(-hi+tdi+l+ei+l)l_i+l = dioq-l-(di+di+l)ai+di+lai+l

(5.13)
y z o o ... o t _ _ D, 3
z y z 0 ... 0 132 d2vq - (,12 + da)a2 + d3_3

0 X y Z ... 0 133 d3(_2 - (,13 -4- d4)_3 + d4t_4

• • • = " (5.14)

0 0 ... x y z &-2 Dp-2

0 0 ... 0 x y k13p-1 Dp-1 )
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where x = -el, y = -hdi + ei q- ei+l, and z = -(-hdi+l + ei+l),

D1 = dlOzo -- (dl + d2)oL1 + d2o_2 + eiflo,

Dp-2 = dp-2av-a - (dp-2 + dp_,)a,_2 + dp_la,-,,

and

D,-1 = alp-lap-2 - (dp-1 + dp)ap_l + d_% + (-hdi+l + ei+l)flp.

Lemma 5.1 The coefficient matrix in equation (5.14) is strictly diagonally dominant

and hence nonsingular.

On solving the above system of equations for fl, we then apply equation (4.32) to

get, on each subinterval It/-1, t/], the spline function

y(t) = a,_,¢,(t) + fli-,¢2(t) -t-o',¢l(t) + fl,¢,_,(t) (5.15)

Here, ¢1, ¢2, ¢1, and ¢2 are given by Theorem (.1.2).

5.2 Convergence of the Approximation

In this analysis, we will denote by s(t) the spline approximant, obtained by control

principles (given by equation (5.15)), of the flmction f(t). Error estimates for the

classical cubic spline have been discussed extensively; see, for example, references

[11, 19, 20]. In this section, we will obtain the convergence rates for our approximation

for case 3(ii); similar procedure will yield the error estimates for the other cases.

Furthermore, we restrict our analysis to the case of uniform mesh with mesh width

h. From equation (5.13), the spline approximation s(t) satisfies the equation

X_i-1 q- Y_i q- Z_i+l = di_i-1 -(di -t- di+l)oti q- di+lOq+l (5.16)

where x = -ei, y = -hdi q- ei q- ei+l, and z = -(-hdi+l + ei+l). Now, s(t) interpolates

f(t) at the mesh points P : to <_ tl <_ ... <_ t/; in other words, s(ti) = c_ = f(td.

Clearly, fl_ = s'(ti). Hence, equation (5.16) can be written as

•s',_l+ ys',+ zs'i+l= dif,_, - + e,)f, + (5.17)
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' = s'(ti) and f_ = f(t,). For h sufficiently small, we have the following:where s i

h 3

wll = h - sinhh _. ---_-

h 2 h 4

w12 = coshh-l_+2--4

h 2 h 4
(5.18)

w21 = -coshh+l_ 2 24

w22 = sinh h

where, for each truncation, we have omitted terms that are of higher order in h than

the ones retained. Also, from equation (4.71):

h 3

cl_(h) - 3 +sinhh-h-(coshh-1)2/sinhh

h 2
cl_(h) -

2
h 2

c_l(h) --
2

c22(h) = h.

(5.19)

Thus,

detC m_ C11C22 -- C12C21

= h4/12 + hsinhh- h 2 - h(coshh - 1)2/sinhh"

hS/120

(5.20)

cll ---- c22/det(C) _ 120/h 5

_12 = -c12/det(C) ._ 60/h 4

e21 = -c2,/det(C) _ 60/h 4

C22 -- Cll/det(C) _, 30/h 3

(5.21)

cosh h . cosh h .

_'_ __ 5/h 2

cosh h . cosh h .

_, = [-_,. + _i-E-_,._le_ + [-,.,2 + __21_
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~ 3/2h

di+l = sinh h

~~ 5/h 2
0321C'12 + _22C22

ei+l = sinh h

7/2h ,

(5.22)

Thus, we obtain the following:

- hdi + ei + ei+l = 14/2h

-hdi+l + ei+l = -3/2h. (5.23)

Theorem 5.1 Let f(t) E C 3 and let 5(t) = s(t) - f(t) be the error that results when

f(t) is interpolated by the spline s, defined above, on the partition P : 0 = to < tl <

... < tp = 1. Then there exists a constant K such that

Is- f[ < Kl[f(3)llh3 (5.24)

To prove Theorem (5.1), we first discuss the following lemma.

Lemma 5.2 Let P be any partition of the interval [a,b]. If f(t) E C3[a,b], then

h 2

Is'(td- f'(t,)l < NIIf(a)(_dll (5.25)

for each node ti, i = 0,1, . . . , p and ti-1 < _i < ti.

Proof:

Using equation (5.23), equation (5.17) may be written as

3, 14, 3, 5 5
_-_Si_ 1 "_- "_S i or- _"_Si+ 1 _--- --_'_O/i-1 -_- _'_i+1 (5.26)

This simplifies to
, , 10

3si_1 + 14s'i + 3si+, = ----_ (f,-, - fi+,) (5.27)

where we have used the interpolation data oq = f_. Suppose that each term of the

form f_:_ is expandable as:

h2 h 3
/.(r+2) _4_ f(r+3) h 4 f(r+4)+=::'>+h::'+'>+-Y" -T" + ....
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Then, it can easily be shown, using Taylor's formula, that

3h 2

3f:_l+14f[-I-3f:+1=20f[+--_-(f'"(__)+f"'(_+) ) (5.28)

ti-1 <_ _ <_ ti+l. If f(3) is continuous on [xi-l,zi+l], then by the Intemediate Value

Theorem we may write

3f[_x + 14f" + 3f/+x = 20fi _ + 3h2f"(_) (5.29)

Let s_ - f' = Ei. Then, subtracting equation (5.28) from equation (5.27) and

replacing f[ with l[fi+l- f_-a]- _ f3(_), we obtain

3Ei__ + 14E, + 3E,+1 = fO)(c) (5.30)

That is,

where

GE = H (5.31)

14 3 0 0 ... 0

3 14 3 0 0

0 3 14 3 0

G= i

0 0 ... 3 14 3

0 0 0 3 14

and Hi = __f(3)(_). If we multiply both sides of equation (5.31) by the matrix

we obtain

D=diag(1/14,...,1/14),

and

DGE = DH (5.32)

DG = I+B
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I 3/14 0 0 ... 0

3/14 I 3/14 0 ... 0

0 3/14 1 3/14 ... 0

• •

0 0 ... 3/14 I 3/14

0 0 ... 0 3/14 1

(5.33)

where IlBIIoo= 6/14 < 1. Thus, (DG) -1 = (I + B) -1 exists, (see reference [31], p61).

Hence,

IIEll_o= II(DG)-IDHIIoo

II(Da)-' llo_llDIIo_llHIIoo
1 1 h 2

< _ IIf(3)l[
- 1-]_14 3

h 2

_< 2-_11Z(3)11

(4/27h2[lf(3)ll for the classical case, see reference [19]). •

Now, to prove Theorem 5.1, we observe that 6(t) = s(t)- f(t) c

s(ti) = f(ti), i = 0, 1,..., p, we obtain, by the Mean Value Theorem,

,_(t)= ,_'(,-)dr
--1

This gives

115(t)ll 15'(r)ldr
--1

< It_'llmaxl(t- t,-,)l

(5.34)

C 2 and since

(5.35)

(5.36)

From equation (5.34),

I1_'11_ _llf<3)ll •

Hence,
h 3

II_U)II- _llf(3)ll

This completes the proof of the theorem.

(5.37)
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5.3 Numerical Examples

ALGORITHM FOR CONSTRUCTING THE CUBIC-EXPONENTIAL 1 SPLINES

To construct the spline interpolaut s(t) for the function f(t), defined at the nodes

to < tt <... < tn, satisfying s'(to) = f'(to) and s'(tn) = f'(tn) :

INPUT A, b, F, B, n; to, tx, ..., tn; c_1 = f(tl), ..., an-1 = f(t,_l);/_o = f'(to);

= f'(tn).

OUTPUT ilk, k = 1, 2,..., n- 1.

Recall, from equation (5.15),

s(t) -- Oq_l¢l(t) 4- fli-l¢2(t) 4- o¢i_bl(t) 4- fli_&(t) for ti-1 < t < ti

Step I For i = 0, 1,..., n - 1 set hi = ti - ti-1.

Step II Compute f2(h,), C(t), ¢i, and ¢i, i= 1,2, from equations (4.63), (4.70), (4.77),

(4.78), (4.80) and (4.81), respectively.

Step III Set

where wij and cij are the entries of the matrices ft and C, respectively.

Step IV Set 11 = dlc_o - (dl + d2)oq + d2o_ + ei/_o, and

1_-1 = dn-lO_n-2 - (d_-I + dn)c_n-1 + dna_ + eiflo,

Step V Set lj = djc_j_l - (dj 4- dj+l)dj 4- dj+lc_j+l

j =2,...,n-1.

Set L = (ll,12,...,ln-2,/n-1)'-

ISo called to reflect the fact that it contains cubic polynomials as well as exponential terms



Step VI Form the tridiagonal matrix, M, with:

lower diagonal elements, -ej,

diagonal elements, (-hid i + ej + ej+l, and

upper diagonal elements, -(-hjdj+l + ej+l ).

Step VII Solve the system M_ = L.

Step VIII OUTPUT _j, j = 1,2,...,n - 1.

Example 5.1 f(t) = sin(nt)

Consider the test function

f(t)---- sin(_-t),
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te [o,1]

We set the boundary conditions:

,5'o = O, _p = -30e -1°

and then construct the spline function for h = 0.2,0.1,0.05. Graphs of the spline

function s(t) and its derivative are shown in Figures 5.4 - 5.6.

Example 5.3 For our third example, we consider the function

f(t) = e -30ta, t e [0, 11

We set the boundary conditions:

and then construct the spline function for h = 0.2, 0.1, 0.05. Graphs of the spline

function s(t) are shown in Figures 5.1 - 5.3.

Example 5.2 f(t) = e -3°t3

Consider the test function
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f(t) = [

We set the boundary conditions:

0 if-1 <t<O

1/2 if t = 0

1 ifO<t<l.

_o=0, _p=O

and then construct the spline function for n -- 80. Graph of the spline function s(t) is

shown in Figure 5.7. In Figure 5.8 is the graph of this same function using the classical

quintic spline. Comparing these two figures, we see that there is an improvement over

the classical quintic approximant. However, we must realise that the scheme used to

obtain Figure 5.7 contains only cubic terms. Further, only the first derivative of

the control law is used in this case. Increasing the order of the derivatives of the

control law used in the cost function, J(u), will result in greater smoothness of the

interpolant.
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1.2
cubic-exponential spline with unifon'n spacing,n=5
t = ! = i i J

1

0.8

_o.6

0.4

0.2

0
0

p_

o11 o12 o13 o14 oi_ o16 o17 o18 oi_
t

Figure 5.1: Function: f(t) = sin(_rt), n -- 5

1,2
cubic-exponenlial spline with uniform spacing,n=lO

= = l i i = = i

0,8

0.6

0.4

0.2

-0:2
0 oi, o12 0:3 o14 °:_ o16 0:7 0:8 o:_

t

Figure 5.2: Function: f(t) --sin(lrt), n-- 10
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1.2
cubic-exponential spline with uniform spacing,n=20
i = i i i = i

I

0.8

0.6

0.2

0

-0.2' o:, o:2 0:3 0:4 0:5 0:6 o:7 o:8 o:,
t

Figure 5.3: Function: f(t) = sin(_rt), n = 20

1.2
Spline approximation ol f(t)=e_-lOt^3) with unilorm spacing; n=5

i ! i = i i i =

1

02

0.6

0.4

0.2

-0,2
0

, L I to:1 o:2 o:_ o., oi_ 0:8 0.7 0.8 o:,
t

Figure 5.4: Functioa: f(t) = e -1°_3, n = 5
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Spline approximation o! f(t)=e'_(-lOt^3) with uniform spacing; n=lO
1.2 .... , ....

1

0.8

0.6

0.4

0.2

0

-0"20 011 012 0'3 o:, 0:5 0:8 0:7 o18 o:,
t

Figure 5.5: Function: f(t) = e -lOt3, n = 10

Spline approximation of f(t)=eA(-lOt^3) with uniform spacing; n=20
1.2 , , ,

1

0.8

_0.6

0.4

0.2

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8
t

o:,

Figure 5.6: Function: f(t) = e -l°t3, n = 20
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1.2

1

0.8

0.6

0.4

cubic-exponential spline with uniform spacing, n=80

0.2

0

-0.2
-1 -o18 -o:8 -o14-o12 _ 0:2 o:4 0:6 0:8

t

Figure 5.7: Interpolation by control theory approach

classical quintic spline with uniform mesh n = 80
1.2 , , , , , , , ,

1

0.8

0.6

0.4

0.2

0

-0.2
-1

I

t i I

-'0'.8 -01.6 --01.4 -0.2 0 012 0.4 01.6 018,

Figure 5.8: Classical quintic interpolation
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